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» 1854: Meteorological Dept of the British Board of Trade
created

» “...in a few years .... we might know in this metropolis the
condition of the weather 24 hours beforehand.” (M.J.Ball
MP, House of Commons, 30 June 1854.)

» Response from House: “Laughter”
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Why Data Assimilation is Important

» Numerical Weather Prediction (NWP) is (largely) an initial
value problem.
» Has contributed to enormous forecast improvements
» Extracts the maximum value from expensive observations
» Accurate analyses are necessary for getting the most from
field programs.
» Reanalyses of past data using modern methods are an
essential resource for climate research.



Best Linear Unbiased Estimate (BLUE)

» Observations y; and y» of a true state x;:

Y1 =Xt + €4

Yo =Xt + €2

» The statistical properties of the errors are known:
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» Estimate x; of x; as a linear combination of the
observations such that (x;) = x; (unbiased) and

02 = {(xa — X¢)?) is minimised (best).

» Then
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Best Linear Unbiased Estimate (cont’d)

» Same estimate found by minimising

J(Xa) _ (Xa—}’1)2 + (Xa —Y2)2
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» Minimising J is the same as maximising exp(—J/2)
» Hence for Gaussian errors the BLUE is the maximum
likelihood (or optimal) estimate.

» For many pieces of datay = (y1,y2,...,¥n)",
J(xa) = (Xa— y) P (xa —y)

where P is the error covariance matrix of y.



Assimilation: The Big BLUE -

Assimilation combines a short-term numerical forecast with
some observations:

J(Xa) = (Xa — x,«)TB_1 (Xa — X¢) + (H(xa) — V)TR_1 (H(xa) —Y)

> X, is the analysis
X; the short-term forecast
y are the observations

R is the observation error covariance

>
>
» H produces the analysis estimate of the observed values
>
» B is the forecast error covariance



The Atmospheric Infrared Transmission Spectrum

Transmittance (percent)
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HIRS (High resolution InfraRed Sounder) Channel
Weights

HIRS/3 Channel Weighting Functions
(U.S. Standard Atmosphere)
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Finding the minimum of J

J(Xa) = (Xa —Xr) "B~ (Xa — X) + (H(Xa) — ) "R™" (H(Xa) — Y)

Solve directly VJ = 0.

» Have to manipulate big matrices

» Nonlinear H is very difficult (satellite radiances)
lterative minimisation (a.k.a. variational assimilation).

» Finds full 3-D structure of the atmosphere (3D-Var)

» Other observations and background helps constrain the
poorly-conditioned and underdetermined inversion of the
satellite radiances



Minimising J

J(Xa) = (Xa — xf)TB_1 (Xa — X¢) + (H(Xa) — V)TR_1 (H(xa) —Y)
To minimise J, we need the gradient:

VJ(Xa) = 2B~ (xa — X;) + 2H'R™ (H(xa) — y)

H= {gz']} is the Jacobian of M (a.k.a. the tangent linear)

H' is the adjoint of H
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The Importance of B

J(Xa) = (Xa — X7) "B~ (Xa — X¢) + (H(Xa) — ¥) R~ (H(xa) — ¥)

B is important:
» Conditioning and speed of convergence
» Getting the statistics right
» Describing atmospheric balance
» Spatial scale of analysis
B in the model variables fails miserably:
» Rank deficient
» Too large to store, let alone operate on



B the best you can B

Representing B typically involves:
» Transform to less-correlated variables.

> (U,v) = (4,X)
> U= —0v/dy + 0x/OX, v =00/0x + dx /0y
» Replace mass field by unbalanced mass:

¢unbal = ¢ - ¢bal(¢)
» Transform to spectral space.

» Rescale.
These make B diagonal = good conditioning and
computational efficiency.
» Truncate the small scales. Forecast error spectrum is red,
with little power at small scales. So truncate B.



Incremental Formulation

Replace

J(Xa) = (Xa— X7) B~ (Xa — X¢) + (H(Xa) — ¥) 'R (H(Xa) — )
by

J(6x) = 6x"BT1ox + (H(x¢) + Hox — y) "R~ (H(x;) + Hox — y)

where §x = x5 — Xy and H is the Jacobian of H (tangent linear).
» H(x5) becomes H(X¢) + Hox

» Computational efficiency since §x now at reduced
resolution of B, H maybe cheaper to compute than H, true
quadratic form.
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A Matter of Time

So far all data assumed to be at the analysis time.
» Assimilate e.g. four times a day.

» All data in 6-hour window assumed to occur at the middle
of that window.

» Introduces some errors —> weather systems move and
develop!

» Reduce errors by assimilating more frequently, but that has
its own problems.

A better way is to introduce the time dimension into the
assimilation, 4-dimensional variational assimilation (4D-Var).



Observations at two times
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4D-Var

Add a term for the later time:

J(Xa) = ... + (Ha2(M(Xa)) — ¥2) "Ry " (Ha(M(Xa)) — ¥2)

» M is the model forecast from t; to
» Subscripts 2 refer to the time &.
The gradient becomes

VJ(Xa) = ...+ 2MTH] R, (Ha(M(Xa)) — ¥2)

» H/ is the adjoint of the Jacobian of #, takes information
about the observation-analysis misfit from radiance space
to analysis space

» M’ is the adjoint of the Jacobian of M and propagates this
gradient information back in time from & to £;.



4D-Var

Minimising
J(Xa) = (Xa—X¢) "B~ (Xa — X¢)
+ (H(xa) —y) "R (H(xa) - y)
+ (Ha2(M(Xa)) — ¥2) "Ry (Ha(M(Xa)) — ¥2)

gives an analysis X, at time t; that
» is close to the background x; at t
» is close to the observations y at £

» initialises a (linearised) forecast that is close to the
observations y, at time &
Adding additional time levels is straightforward, as is the
incremental formulation (exercise).



4D-Var analysis of a single pressure observation

One pressure observation at centre of low, 5hPa below
background, at end of 6-hr assimilation window.
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In practice ...

This is not a small problem!
» Atmospheric model has O(108 to 107) variables
» Millions of observations per day
» Limited time available under operational constraints

The model has several hundred thousand lines of code, 4D-Var
requires

» operations by the Jacobian of the model
» operations by the adjoint of the Jacobian

Good results require accurately estimating the necessary
statistics (R and B) and careful quality control of the
observations.



Extensions

Multiple “Outer Loops”

» Problem: Accuracy is limited by the linearisations of H and
M.

» Solution: Update the nonlinear forecast (outer loop) several
times during the minimisation of the J(6x) (inner loop).

Multi-incremental 4D-Var
» Problem: Balancing speed of convergence against need to
resolve small scales.
» Solution: Begin minimising with 6x at low resolution, and
increase resolution after each iteration of the outer loop.



Extensions: Weak Constraint 4D-Var

» Doesn’'t assume that the model is perfect
» Allows a longer window.
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Summary

Var is better than direct solution (a.k.a. Optimum Interpolation)
because:

» Can handle lots of observations
» Can better cope with nonlinear observation operator H
» Solves for the whole domain at once

4D-Var is better than 3D-Var because:
» Uses observations at the correct time
» Calculates analysis at the correct time
» Implicitly generates flow-dependent B

Special issues of QJRMS and JMetSocJapan from WMO DA workshops.
Kepert, J.D., 2007: Maths at work in meteorology. Gazette of the Australian
Mathematical Society, 34, 150 — 155. Available from
http://www.austms.org.au/Publ/Gazette/
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